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Abstract. A classical theory is developed for the time evolution and scattering of minimally
coupled massive scalar fields on closed spacetimes that evolve from initial to final static states.
The time evolution is obtained by reformulating the field equation as an abstract Cauchy problem
on a Hilbert space. Semigroup theory is used to prove the existence of a two-parameter family
of evolution operators, and the field solution is obtained as a mapping of Cauchy data. The
scattering theory is also formulated on a Hilbert space, and the wave operators and scattering
operator are constructed from the evolution operators. It is shown that this approach most readily
applies to spacetimes that undergo contraction.

1. Introduction

The propagation of scalar fields on curved spacetimes is of interest both at a classical level,
and as a foundation from which to build a semiclassical quantum theory in which the field
itself is quantized in the presence of a classical ‘background’ metric [1–3]. A well known
approach to the classical problem, which reduces to the analysis of hyperbolic equations on
Lorenztian manifolds, is due to Leray [4, 5]. In this paper, we study an alternative functional
analytical approach which entails the use of semigroup theory. Apparently, relatively little
work has been done applying this theory on curved spacetimes as compared to its numerous
applications on Minkowski spacetime [6, 7]. For ultrastatic metrics, the application of
functional analytical methods for scalar and vector field equations is well known [8, 9]. A
key objective of this study is the determination of metric criteria that enable the use of
these methods for time-dependent metrics. Specifically, we consider the time development
and scattering of minimally coupled massive scalar fields on closed spacetimes that evolve
from initial to final static states. The field equation is reformulated as an abstract Cauchy
problem on a Hilbert space, and once in this form conditions are imposed on the metric
that enable the use of semigroup theory. We prove the existence of a two-parameter family
of evolution operators, and obtain the field solution as a mapping of Cauchy data. For the
scattering theory, we construct the wave operators, and then the scattering operator, all of
which are represented in terms of the evolution operators. We show that this approach most
readily applies to closed spacetimes that undergo ‘contraction’ from initial to final static
states. Lastly, we discuss the application of this theory to field quantization.

2. Preliminary concepts

Let (M, g) be a globally hyperbolic oriented time-oriented smooth Lorentzian manifold
consisting a four-dimensional manifoldM and a smooth metricg with signature
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(−1, 1, 1, 1) which is of the form

gµν(t, x) =
(−1 0

0 γ (t, x)

)
. (2.1)

Thus, M ≈ R × � and there is a global time coordinate, and a family of Cauchy
surfaces(�, γ (t, x)) which we restrict to be compact and without boundary. The function
γ (t, x) ∈ C∞(R × �) is a smooth Riemannian metric on� for eacht ∈ R. We further
assume thatγ (t, x) has the following time development,

γ (t, x) =


γT (x) (T 6 t)
γ̃ (t, x) (0< t < T )

γ0(x) (t 6 0).

(2.2)

Thus,(M, g) represents a closed universe that evolves from an initial static state(�, γ0(x)),
to a final static state(�, γT (x)). From this point on, thex dependence ofγ (t, x) is
suppressed when appropriate, and the standard convention is adopted in which Greek
subscripts apply to(M, g) taking values from 0 to 4, and Latin subscripts apply to(�, γ (t))

and range from 1 to 3.
Since the two manifolds(M, g) and (�, γ (t)) have different dimensions and their

metrics have different signatures care is needed when discussing operations that are common
to both. To avoid confusion, different notation is used to distinguish these operations. Let
d4 be the exterior derivative on(M, g), and letδ4 be the codifferential,δ4 = ∗ d4∗, where
∗ is the star operator that sendsp-forms to (n − p)-forms and satisfies(∗)2 = (−1)p+1.
The D’Alembertian is given by� = −( δ4d4+ d4δ4 ).

The exterior derivative on(�, γ (t)), denotedd, is independent of the metric and is
therefore common to all Cauchy surfaces. However, the codifferentialδ(t) = (−1)p ∗t d ∗t
depends on the star operator∗t which, in turn, depends on the metric and is therefore
indexed byt (∗2

t = 1). The Laplace–Beltrami operator4(t) = δ (t) d + d δ(t) is also
indexed. A detailed description of these operators can be found in [10, 11].

Let Ht (�) denote the Hilbert space of complex-valued functions on� that are square
integrable with respect to the measureµγ (t) induced byγ (t). Thus,Ht (�) is endowed

with a norm‖ · ‖t = 〈·, ·〉
1
2
t , defined by the inner product

〈f, g〉t =
∫
�

f g
√
γ (t)dx1 ∧ dx2 ∧ dx3.

We take the operator closures ofd, δ(t) and4(t) = δ(t) d + d δ(t) defined onC∞(�) and
have these as unbounded Hilbert space operators. The Laplace–Beltrami operator has the
following representation in local coordinates,

4(t)f = −1√
γ (t)

∂i

(
γ ij (t)

√
γ (t)∂j f

)
(2.3)

where f ∈ C∞(�) and δ(t) f ≡ 0. It is well known that4(t) extends to a positive
self-adjoint operator onHt (�), and that this space decomposes as follows [12, 13]:

Ht (�) = Ran(4(t))⊕ Ker(4(t)). (2.4)

The subspace Ker(4(t)) consists of harmonic functions which are constants for compact
manifolds such as(�, γ (t)).

We introduce another operator4′(t) = ∂t4(t) on smooth functions,

4′(t) ≡ ∂t
( −1√

γ (t)
∂i

(
γ ij (t)

√
γ (t)∂j f

))
. (2.5)
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SinceC∞(�) ⊂ D(4′∗(t)) (adjoint) is dense inHt (�),4′(t) is closable, and we use the
same notation to denote its closure.

Finally, note that the spaces{Ht (�)}t∈[0,T ] are setwise equivalent. To see this, choose
t, t ′ ∈ [0, T ] and let µγ (t), µγ (t ′) denote the measures induced byγ (t) and γ (t ′),
respectively. Consider∫

�

|f |2
√
γ (t)dx1 ∧ dx2 ∧ dx3 =

∫
�

|f |2
√
γ (t)√
γ (t ′)

√
γ (t ′)dx1 ∧ dx2 ∧ dx3

where
√
γ (t)/

√
γ (t ′), which is smooth, bounded, and strictly positive, is the Radon–

Nikodym derivative ofµγ (t) with respect toµγ (t ′). Thus the measures{µγ (t)}t∈[0,T ]

are mutually absolutely continuous, and since
√
γ (t)/

√
γ (t ′) is bounded,f ∈ Ht (�) ⇔

f ∈ Ht ′(�). Having established these preliminary results we turn to the field problem.

3. The Cauchy problem

In this section, we obtain an abstract solution to the minimally coupled Klein–Gordon
equation

�φ +m2φ = 0 (3.1)

wherem ∈ (0,∞). For a metric of the form (2.1), this equation reduces to

∂2
t φ +K(t)φ = 0 (3.2)

where

K(t) = 4(t)+m2. (3.3)

Note thatK(t) is strictly positive, self-adjoint and injective onHt with D(K(t)) = D(4(t)).
Therefore,K−1(t) is positive, self-adjoint and bounded, andK±1/n(t) are positive and self-
adjoint for n = 2, 4, . . ..

The second-order equation (3.2) can be written as a first-order system,

∂

∂t

(
φ(t)

π(t)

)
= −iH(t)

(
φ(t)

π(t)

)
(3.4)

whereπ(t) = ∂tφ(t), and

H(t) = i

(
0 I

−K(t) 0

)
. (3.5)

It is well known thatH(t) with D(H(t)) = D(K(t)) ⊕ D(K 1
2 (t)) is self-adjoint on the

Hilbert space

HK(t)(�) ≡ D(K 1
2 (t))⊕Ht (�) (3.6)

with inner product

〈F,G〉K(t) ≡ 〈K 1
2 (t)f1,K

1
2 (t)g1〉t + 〈f2, g2〉t (3.7)

whereF =
(
f1

f2

)
,G =

(
g1

g2

)
∈ H [14, 15], SinceH(t) is self-adjoint it gives rise to a

group of unitary operatorsWt(s) ≡ exp(−iH(t)s) on HK(t). These operators can also be
viewed as a contraction semigroup with generator−iH(t) for s > 0. Therefore, from the
Hille–Yosida theorem we have

‖R(λ : −iH(t))F‖K(t) 6 1

λ
‖F‖K(t) (3.8)
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whereR(λ : −iH(t)) = [λI − (−iH(t))]−1 (resolvent) andλ ∈ (0,∞) ⊂ ρ(−iH(t))
(resolvent set) [6].

It is important to note that the above results apply forH(t) onHK(t) for eacht ∈ [0, T ].
However, the goal is to reformulate (3.4) as a ‘time-dependent’ operator equation on a single
Hilbert space (independent oft), thereby transforming the classical dynamics to an abstract
Cauchy problem. Once in this form, we apply semigroup theory and construct a two-
parameter family of evolution operators. Before we proceed, a brief review of some key
results is in order [6, 7].

Definition 1. Let X be a Banach space. A familyU(t) of linear operators fromX to X
is called aC0 semigroup if for eachF ∈ X,

‖U(t)F‖X <∞
U(t + s)F = U(t)U(s)F U(0)F = F
t → U(t)F is continuous fort > 0.

Definition 2. Let X be a Banach space. A family{A(t)}t∈[0,T ] of infinitesimal generators
of C0 semigroups onX is called stable if there are constantsB > 1 and β (stability
constants) such that

(β,∞) ⊂ ρ(A(t)) (3.9)

for t ∈ [0, T ] and∥∥∥∥ k∏
j=1

R(λ : A(tj ))

∥∥∥∥
X

6 B

(λ− β)k (3.10)

for λ > β and for every finite sequence 06 t1 6 t2, . . . , tk 6 T , k = 1, 2, . . . . In (3.10) the
product of resolvent operators is ‘time-ordered’ with the factors that contain largertj to the
left of ones with smallert [7].

The following theorem establishes the criteria that are sufficient for the existence of an
abstract solution to evolution equations of the form

∂tF (t) = A(t)F (t). (3.11)

Theorem 1. Let {A(t)}t∈[0,T ] be a stable family of infinitesimal generators ofC0

semigroups on a Banach spaceX with stability constantsβ andB. If D(A(t)) ≡ D(A) is
independent oft and, for eachF ∈ D(A),A(t)F is continuously differentiable inX then
there exists a unique two-parameter family of evolution operatorsU(t, s),0 6 s 6 t 6 T ,
satisfying

‖U(t, s)‖X 6 B exp(β(t − s))
for 06 s 6 t 6 T , and

U(t, s)D(A) ⊂ D(A) ∂tF (t) = A(t)F (t)
whereF(t) = U(t, s)F (s), andF(s) is the Cauchy data att = s [7].

We return now to the first-order equation (3.4). To apply theorem 1 we first identify
the operator−iH(t) with A(t) and the ‘out’ Hilbert spaceHK(T ) with X. The next step is
to establish conditions on the metrics{γ (t)}t∈[0,T ] that satisfy the criteria of theorem 1.
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Metric conditions. Let f ∈ Ht (�) andg ∈ C∞(�). We assume that the family of metrics
{γ (t)}t∈[0,T ] satisfies the following conditions:

‖f ‖2
T 6 ‖f ‖2

t ′ 6 ‖f ‖2
t 6 MT ‖f ‖2

T (3.12)

‖4 1
2 (T )g‖2

T 6 ‖4
1
2 (t ′)g‖2

t ′ 6 ‖4
1
2 (t)g‖2

t 6 M̃4 1
2
‖4 1

2 (T )g‖2
T (3.13)

for 06 t 6 t ′ 6 T , with constantsMT , M̃4 1
2
> 1, and

‖4(t)‖2
t 6 M4(t, t ′)‖4(t ′)g‖2

t ′ +M4 1
2
(t, t ′)‖4 1

2 (t ′)g‖2
t ′ (3.14)

‖4′(t)g‖2
t 6 M ′4‖4(τ )g‖2

τ +M ′4 1
2
‖4 1

2 (τ )g‖2
τ (3.15)

∀t, t ′ ∈ [0, T ] and someτ ∈ [0, T ], whereM4(t, t ′),M ′4 > 0, andM4 1
2
(t, t ′),M ′

4 1
2
> 0.

Remark 1. The metric conditions are related to the criteria of theorem 1 as follows.
Conditions (3.12)–(3.14) imply that the family of operators{−iH(t)}t∈[0,T ] is stable, and the
domainD(−iH(t)) is independent oft . Condition (3.15) implies thatH(t)F is continuously
differentiable onHK(T ).

Remark 2. The first condition (3.12) implies that the ‘volume’V (t) ≡ ‖1‖2
t of the Cauchy

surface(�, γ (t)) is either constant, or contracts as a function of time.

Conditions (3.12)–(3.14) imply that the domainsD(K(t)) andD(K
1
2 (t)) are independent

of time, i.e.D(K(t)) = D(4(t)) ≡ D(4) andD(K
1
2 (t)) = D(4 1

2 (t)) ≡ D(4 1
2 ) (see the

appendix). This, in turn, implies that the spaces{HK(t)}t∈[0,T ] are setwise equivalent, and:

Proposition 1. The domainD(H(t)) ≡ D(H) = D(4)⊕D(4 1
2 ) is independent oft .

Proof. Recall thatD(H(t)) = D(K(t)) ⊕ D(K 1
2 (t)) and apply propositions 5 and 6 of

the appendix. �
Another consequence of the metric conditions is:

Proposition 2. Let F ∈ HK(T ), if a family of metrics {γ (t)}t∈[0,t ] satisfies the metric
conditions (3.12) and (3.13) then

‖F‖2
HK(T ) 6 ‖F‖2

HK(t ′) 6 ‖F‖2
HK(t) 6 M̃‖F‖2

HK(T ) (3.16)

for 06 t 6 t ′ 6 T , whereM̃ > 1.

Proof. First, note that (3.13) holds for allf ∈ D(4 1
2 (t)) = D(4 1

2 ) independent oft . Let

F =
[
f1

f2

]
∈ HK(T ) = D(K 1

2 (t))⊕Ht , and consider

‖F‖2
HK(t) = ‖K

1
2 (t)f1‖2

t + ‖f2‖2
t

= ‖4 1
2 (t ′)f1‖2

t +m2‖f1‖2
t + ‖f2‖2

t . (3.17)

Equation (3.16) follows immediately from (3.12), (3.13), and (3.17) with̃M =
max{MT , M̃4 1

2
}. �

Note that (3.16) implies that
1

M̃
‖F‖2

HK(t) 6 ‖F‖2
HK(t ′) 6 M̃‖F‖2

HK(t) (3.18)

∀t, t ′ ∈ [0, T ], and therefore the spaces{HK(t)}t∈[0,T ] have equivalent norms.
The following propositions are needed for the application of theorem 1.



6070 E P Furlani

Proposition 3. The operators{−iH(t)}t∈[0,T ] represent a stable family of infinitesimal
generators ofC0 semigroups onHK(T ).

Proof. We verify the criteria of definition 2. First, recall that−iH(t) is the infinitesimal
generator of aC0 contraction semigroupWt(s) ≡ exp(−iH(t) s) on HK(t). This and
(3.16) imply thatWt(s) is aC0 semigroup onHK(T ). Hence{−iH(t)}t∈[0,T ] is a family of
infinitesimal generators ofC0 semigroups onHK(T ). It remains to show that this family is
stable.

Let ρt (−iH(t)) and ρT (−iH(t)) denote the resolvent sets of−iH(t) as an operator
on HK(t) andHK(T ), respectively. From the Hille–Yosida theorem we have(0,∞) ⊂
ρt (−iH(t))∀t ∈ [0, T ]. This implies that [λ−(−iH(t))] is bijective onHK(t) for λ ∈ (0,∞).
SinceHK(t) andHK(T ) are setwise equivalent we have [λ− (−iH(t))] bijective onHK(T )
for λ ∈ (0,∞) and thus

(0,∞) ⊂ ρT (−iH(t)) (3.19)

∀t ∈ [0, T ]. Also, from (3.8) and (3.12) it follows that

‖R(λ : −iH(t))F‖K(T ) 6 ‖R(λ : −iH(t))F‖K(t)
6 1

λ
‖F‖K(t) (3.20)

∀t ∈ [0, T ]. Let 06 t1 6 t2, . . . , tk 6 T be a time ordered partition of [0, T ]. From (3.20)
and repeated application of (3.8) and (3.12) we have∥∥∥∥ k∏

j=1

R(λ : −iH(tj ))F

∥∥∥∥
K(T )

6
∥∥∥∥ k∏
j=1

R(λ : −iH(tj ))F

∥∥∥∥
K(tk)

6 1

λ

∥∥∥∥ k−1∏
j=1

R(λ : −iH(tj ))F

∥∥∥∥
K(tk)

6 1

λ

∥∥∥∥ k−1∏
j=1

R(λ : −iH(tj ))F

∥∥∥∥
K(tk−1)

6 1

λ2

∥∥∥∥ k−2∏
j=1

R(λ : −iH(tj ))F

∥∥∥∥
K(tk−1)

...

6 1

λk
‖F‖K(t1)

6
√
M̃

λk
‖F‖K(T ).

Thus {−iH(t)}t∈[0,T ] is a stable family of operators with stability constantsβ = 0 and

B =
√
M̃ . �

Proposition 4. For eachF ∈ D(H(t)) = D(H),−iH(t)F is continuously differentiable.

Proof. Let F =
(
f1

f2

)
∈ D(H) = D(4) ⊕ D(4 1

2 ). We want to show that there is a

vectorF ′(t) ∈ HK(T ) that is continuous with respect tot , and satisfies

lim
h→0

∥∥∥∥−iH(t + h)F − (−iH(t)F )

h
− F ′(t)

∥∥∥∥
HK(T )
= 0.
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Since,

−iH(t + h)F − (−iH(t)F ) = −i

(
0

4(t + h)f1−4(t)f1

)
the proof reduces to showing that4(t)f is continuously differentiable. Letf ∈ D(4(t))
and let{fn} be a Cauchy sequence of smooth functions such that

lim
n→∞‖fn − f ‖

2
G(4(t)) = 0. (3.21)

Consider the sequence{4′(t)fn}. From (3.12) and (3.15) we have

‖4′(t)(fn − fm)‖2
T 6 ‖4′(t)(fn − fm)‖2

t

6 M ′4‖4(τ )(fn − fm)‖2
τ +M ′4 1

2
‖4 1

2 (τ )(fn − fm)‖2
τ

6 ‖4(τ )(fn − fm)‖2
τ (M

′
4 +M ′4 1

2
‖(fn − fm)‖2

τ ). (3.22)

However, (3.21), which is true forτ ∈ [0, T ], implies that the right hand side of (3.22)
tends to zero (proposition 5). Therefore, given anyε > 0, there existsN(ε) independent of
t such that

‖4′(t)(fn − fm)‖T < ε

as long asn,m > N(ε), which shows that{4′(t)fn} is uniformly convergent with respect
to ‖ · ‖T for t ∈ [0, T ]. Now, since{f ′n(t)} ≡ {4′(t)fn} is uniformly convergent on [0, T ],
and {fn(t)} ≡ {4(t)fn} converges tof (t) ≡ 4(t)fn for eacht ∈ [0, T ], it follows that
f (t) is differentiable withf ′n(t)→ f ′(t) [16, 17]. Moreover, since each element of{f ′n(t)}
is continuous,f ′(t) is also continuous, and therefore4(t)f is continuously differentiable.

�

We are finally ready to prove the existence of the evolution operators.

Theorem 2. Let {γ (t)}t∈[0,T ] be a family of metrics satisfying the metric conditions (3.12)–
(3.15) then there exists a unique two-parameter family of evolution operatorsU(t, s),0 6
s 6 t 6 T , satisfying

‖U(t, s)‖HK(T ) 6
√
M̃ for 06 s 6 t 6 T (3.23)

U(t, s)D(H) ⊂ D(H) (3.24)

∂tF (t) = −iH(t)F (t) (3.25)

where

H(t) = i

(
0 I

−K(t) 0

)
with D(H(t)) = D(H) independent of time, andF(t) = U(t, s) F (s) , whereF(s) is the
Cauchy data att = s.

Proof. We verify that the criteria of theorem 1 are satisfied, i.e. that{−iH(t)}t∈[0,T ] is a
stable family of infinitesimal generators ofC0 semigroups onHK(T ),D(−iH(t)) ≡ D(H)
independent oft , and for eachF ∈ D(H), −iH(t)F is continuously differentiable inHK(T ).
These were proven in propositions 1, 3 and 4, respectively. �
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Theorem 2 gives the evolution operator for the period 06 s 6 t 6 T . The evolution
operators fort 6 s 6 0 andT 6 s 6 t are the ‘free’ operators

U0(t, s) = exp(−iH(0)(t − s)) (3.26)

and

UT (t, s) = exp(−iH(T )(t − s)) (3.27)

respectively. Thus, there are three distinct evolution operators corresponding to three
different epochs, i.e.,

U(t, s) =


UT (t, s) (T 6 s 6 t)
U(t, s) (06 s 6 t 6 T )
U0(t, s) (t 6 s 6 0).

(3.28)

To obtain the time evolution between arbitrary Cauchy surfaces, one needs to take the
appropriate combinations of these operators.

Finally, for the scattering problem we need the inverse ofUT (t, s) andU(t, s). Since
H(T ) is self-adjoint onHK(T ), UT (t, s) is unitary with inverseU−1

T (t, s) = UT (s, t). The
operatorU(t, s) also has an inverse. To see this, it suffices to show that

U(t, s)F 1(s) = U(t, s)F 2(s) H⇒ F 1(s) = F 2(s) (3.29)

for real-valuedF 1(s) andF 2(s). To this end, consider the symplectic form

3t(F,G) ≡ 〈f1, g2〉t − 〈f2, g1〉t . (3.30)

It is well known that real-valued solutions of hyperbolic equations on globally hyperbolic
manifolds preserve this form, i.e.,3t(F (t),G(t)) = 3s(F (s),G(s)) where F(t) =
U(t, s)F (s),G(t) = U(t, s)G(s), andF(s),G(s) are real-valued [4, 5, 18, 19]. To prove
(3.29), letF(s) = F 1(s)−F 2(s), F(t) = U(t, s)F (s), andG(s) be any smooth real-valued
vector. AssumeF(t) = 0, and consider

3t(F (t),G(t)) = 0H⇒ 3s(F (s),G(s)) = 0.

SinceG(s) is arbitrary we haveF(s) = 0. Thus,U(t, s) is injective with inverseU−1(t, s).
Having obtained the classical dynamics, we proceed to the scattering theory.

4. Scattering theory

The goal of scattering theory is to compare the asymptotic behaviour of a field solution
as t → −∞ to its asymptotic behaviour ast → +∞, that is, to construct the scattering
operator. Note that this scattering problem is different from what one usually encounters
in two respects. First, a typical scattering problem entails an asymptotic comparison of a
free and interacting dynamics which are described by evolution operators, sayU0(t, 0) and
U(t, 0), respectively. However, in our case the ‘interacting’ evolution operatorU(t, 0) is
asymptotically compared to two ‘different’ free evolution operatorsU0(t, 0) andUT (t, 0) as
t →−∞ and t →∞, respectively. Second, the ‘generator’ of the ‘free’ dynamics usually
has a continuous spectrum which reflects the fact there are no bound states. However, in
our case the generators of the ‘free’ dynamics have discrete spectra (the Laplace–Beltrami
operator has a discrete spectrum on compact manifolds). Nevertheless, scattering occurs in
the sense that the time evolution of the metric perturbs the time development of the field.
Also, note that this problem is formally similar to an external field problem in which the
field is ‘turned on’ for a finite period of time [20].
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To develop the scattering theory, we show that for any choice of data8 ∈ HK(T ) for
the interacting dynamics8(t) = U(t, 0)8 there are unique ‘free’ fields8in(t), and8out(t)

that describe the asymptotic behaviour of8(t) in the distant past and future, respectively,
i.e.

lim
t→−∞‖8in(t)−8(t)‖HK(T ) = 0 (4.1)

and

lim
t→∞‖8out(t)−8(t)‖HK(T ) = 0. (4.2)

where

8in(t) = U0(t, 0)8in (4.3)

and

8out(t) = UT (t, 0)8out. (4.4)

With this in mind, we define the ‘in’ and ‘out’ spaces

Hin = {8 ∈ HK(T ) : ∃8in ∈ HK(T ) with lim
t→−∞8in(t)−8(t) = 0}

and

Hout = {8 ∈ HK(T ) : ∃8out ∈ HK(T ) with lim
t→+∞8out(t)−8(t) = 0}.

Note that throughout this section we choose the reference data to be at time zero; however,
this is arbitrary and the same analysis applies to reference data on any other Cauchy surface.

The analysis begins with the construction of the wave operatorsWin andWout that map
the data8 of the perturbed solution to the data of the ‘in’ and ‘out’ field, respectively,
i.e., 8in = Win8 and8out = Wout8. We treat (4.1) first. This case is trivial because
U(t, 0) = U0(t, 0) for t 6 0. Thus,8in = 8 and

Win = I. (4.5)

Note,Hin = Ran(W−1
in ) = D(Win) = HK(T ).

Next, we treat (4.2). This case is also easy sinceU(t, s) = UT (t, s) for T 6 s 6 t . One
can readily verify that

Wout = U−1
T (T , 0)U(T , 0). (4.6)

Since U−1
T (T , 0) is bounded,Wout makes sense. It is easy to check thatW−1

out =
U−1(T , 0)UT (T , 0) is also bounded. Also,Hout = Ran(W−1

out) = D(Wout) = HK(T ), and
therefore

Hin = Hout = HK(T ).
Finally, we define the classical scattering operatorScl ≡ WoutW

−1
in ,

Scl = U−1
T (T , 0)U(T , 0). (4.7)

Note that,

Scl8in = 8out (4.8)

and thereforeScl correlates the data for the past and future asymptotics of the perturbed
dynamics. The construction of this operator completes the scattering theory.
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5. Examples

To apply the theory developed above, one needs to determine whether a given metric satisfies
conditions (3.12)–(3.15). We give two examples of metrics that satisfy these conditions.

For the first example, we assume that the family of metrics is of the form
{γ (t, x)}t∈[0,T ] = {α(t)γ (x)}t∈[0,T ] . Thus the line element for this spacetime is of the
form

ds = −dt2+ α(t) γij (x) dxidxj . (5.1)

Robertson–Walker spacetimes (e.g. de Sitter space) have this form of conformally static
metric; however, for those metricsα(t) is not subject to the constraints imposed here [21].
Specifically, we assume thatα(t) > 0 is a smooth function with

α(t, x) =
{

1 t 6 0

α(T ) t > T .

The metric conditions (3.12)–(3.15) reduce to the following constraints onα(t),

α
3
2 (T ) 6 α 3

2 (t ′) 6 α 3
2 (t) 6 MT α

3
2 (T ) (5.2)

α
5
2 (T ) 6 α 5

2 (t ′) 6 α 5
2 (t) 6 M̃4 1

2
α

5
2 (T ) (5.3)

for 06 t 6 t ′ 6 T , and

α
7
2 (t) 6 M4(t, t ′)α

7
2 (t ′)+M4 1

2
(t, t ′)α

5
2 (t ′) (5.4)

(α′(t))2α
3
2 (t) 6 M ′4α

7
2 (τ )+M ′

4 1
2
α

5
2 (τ ) (5.5)

∀t, t ′ ∈ [0, T ] and someτ ∈ [0, T ]. Note that the volume of the Cauchy surface is either
constant or decreases with time, i.e.V (t ′) 6 V (t) for 06 t 6 t ′ 6 T .

For the second example, we assume that the family of metrics is of the form
{γ (t, x)}t∈[0,T ] = {α(t, x)γ (0, x)}t∈[0,T ] whereα(t, x) > 0 is a smooth function with

α(t, x) =
{

1 t 6 0

α(T , x) t > T .

We further assume that there is a finite atlas of charts{2k, χk}k∈[1,N ] covering� such that
the metrics{γ (t, x)}t∈[0,T ] have a diagonal form in each chart, i.e.

γ (t, x) =
(
γ 11(t, x) 0 0

0 γ 22(t, x) 0
0 0 γ 33(t, x)

)
(5.6)

for t ∈ [0, T ] where

γ ii(t, x) = α(t, x)γ ii(0, x). (5.7)

Examples of manifolds with this property include the sphere and torus. We show that
the metrics{γ (t, x)}t∈[0,T ] satisfy conditions (3.12)–(3.15) ifα(t, x) satisfies the following
conditions. First, we assume that there existsε > 0 such that

ε <
α(t ′, x)
α(t, x)

< 1 (5.8)

∀x ∈ �, with 06 t < t ′ 6 T . This condition implies that

α(t, x)

α(t ′, x)
<

1

ε
(5.9)
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and √
γ (t, x)√
γ (t ′, x)

=
(
α(t, x)

α(t ′, x)

)
3
2 < ε−

3
2 (5.10)

∀x ∈ �, t, t ′ ∈ [0, T ]. We further assume that, for each chart(2k, χk),

max
i

sup
x∈2k

∣∣∣∣∂i ( α(t, x)α(t ′, x)

)∣∣∣∣ < Q (5.11)

sup
x∈2k
|∂t ln(α(t, x))| < P (5.12)

and

max
i

sup
x∈2k
|∂i(∂t ln(α(t, x)))| < P ′ (5.13)

∀t, t ′ ∈ [0, T ], whereQ,P, P ′ > 0.
Given the constraints above, it is easy to show that the metric condition (3.12) is satisfied

with MT = ε− 3
2 . To verify the remaining conditions we make use of the relation

‖4 1
2 (t)g‖2

t = 〈g,4(t)g〉t
= 〈dg, d g〉t

≡
N∑
k=1

∫
ηk
χk(2k)

3∑
i=1

γ ii(t)|∂ig|2
√
γ (t)d3x (5.14)

where{ηk}k=[1,N ] is a partition of unity subordinate to the atlas{2k, χk}k∈[1,N ] . To verify
condition (3.13) we write‖4 1

2 (t)g‖2
t in terms of (5.14), apply (5.9) and (5.10) and obtain

M̃4 1
2
= ε− 5

2 .

The remaining conditions require some analysis. For condition (3.14) choose any chart
(2k, χk) and consider the following representation of4(t)f , in local coordinates,

4(t)f =
3∑
i=1

−1√
γ (t)

∂i(γ
ii(t)

√
γ (t)∂if )

=
3∑
i=1

√
γ (t ′)√
γ (t)

−1√
γ (t ′)

∂i

(
γ ii(t)

√
γ (t)

γ ii(t ′)
√
γ (t ′)

γ ii(t ′)
√
γ (t ′)∂if

)

= −5

2

(
α(t, x)

α(t ′, x)

)3
2 3∑
i=1

∂i

(
α(t, x)

α(t ′, x)

) √
γ (t ′)√
γ (t)

γ ii(t ′)∂if + α(t, x)

α(t ′, x)
4(t ′)f. (5.15)

By applying (5.9)–(5.11) to (5.15), and then summing the contributions from all the charts
we obtain

‖4(t)f ‖2
t 6 M4‖4(t ′)f ‖2

t ′ +M4 1
2
‖4 1

2 (t ′)f ‖2
t ′ (5.16)

where

M4 =
(

1

ε

)7
2

and

M4 1
2
= 25

4

(
1

ε

)9
2

Q2 γmax
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where

γmax= max
i
(sup
x∈�

γ ii(t, x)). (5.17)

We apply a similar analysis for condition (3.15). Choose any chart(2k, χk) and consider
the following representation of4′(t)f , in local coordinates:

4′(t)f =
3∑
i=1

∂t

( −1√
γ (t)

∂i(γ
ii(t)

√
γ (t)∂if )

)

= ∂t (ln(α(t, x)))4(t)f − 5

2

3∑
∂i [∂t (ln(α(t, x)))]γ

ii(t)∂if. (5.18)

By applying (5.12) and (5.13) to (5.18), integrating over all charts, and then substituting
the results into (5.16) witht ′ = 0 we obtain

‖4′(t)f ‖2
t 6 M ′4‖4(0)f ‖2

0+M ′4 1
2
‖4 1

2 (0)f ‖2
0

where

M ′4 = P 2M4

and

M ′
4 1

2
= P 2M4 1

2
+ (P ′)2 25

4
γmax.

Thus, the metric conditions are satisfied. Finally, note that the constraint (5.8) implies that
the volume of the Cauchy surfaces decreases monotonically with time, i.e.V (t ′) < V (t)

for 0< t < t ′ < T.

6. Discussion

Having solved the classical problem, we give a brief description of a method that could
presumably be used for field quantization. This method has been developed by numerous
authors, including, for example, Dimock and Isham [19, 22].

The goal of the quantum problem is to construct a field operator that satisfies the field
equation in a distributional sense, and satisfies the canonical commutation relations (CCRs).
The first step is the construction of operator-valued ‘data’ on an arbitrary Cauchy surface.
This Cauchy data provides a representation of the CCRs on the Fock space over the square-
integrable functions on this surface. The time development mimics the classical problem
with the classical evolution operator transferred to the test functions inside the arguments
of the field operators. Thus, the interacting field solves an operator-valued Cauchy problem
in addition to the other quantum requirements.

The quantum scattering theory also mimics the classical theory. Given the Cauchy data
for the interacting field one defines ‘data’ for the ‘in’ and ‘out’ fields by transferring the
respective classical wave operators from the interacting ‘data’ to their test functions. The
time development of the ‘in’ and ‘out’ data is realized in a distributional sense using the
respective ‘free’ evolution operators. Thus, representations of the ‘in’, ‘out’, and interacting
fields are obtained, all on the same Fock space. To describe scattering, the ‘out’ field is
represented in terms of the ‘in’ field by transferring the classical scattering operator from
the ‘in’ data to their test functions. To complete the theory one shows that this mapping
between the ‘in’ and ‘out’ data is unitarily implementable. This is equivalent to proving the
existence of the quantum scattering operator. For this final step, we note the work of Wald
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[23] and Fullinget al [24]. Wald has proven the existence of theS-matrix on spacetimes that
are flat off of compact sets, and Fullinget al have adapted this work to closed spacetimes
that are initially, and finally static. Since these are the spacetimes considered here, we
are optimistic that this work can be applied to our problem. Finally, although the method
outlined above appears to be viable, numerous technical details remain to be addressed.
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Appendix

This appendix contains two propositions that establish the time invariance of the domain of
the Laplace–Beltrami operator and its square root.

Proposition. If a family of metrics {γ (t)t}t∈[0,T ] satisfies the metric conditions (3.12),
(3.13) and (3.14) then the domainD(K(t)) = D(4(t)) ≡ D(4) is independent oft .

Proof. Choose anyt ∈ [0, T ] and f ∈ D(K(t)), and let{fn} be a Cauchy sequence of
smooth functions that converge tof in the graph norm (C∞(�) is a core forK(t)), i.e.

lim
n→∞‖fn − f ‖

2
G(K(t)) = 0 (A1)

where

‖f ‖2
G(K(t)) = ‖f ‖2

t + ‖(4(t)+m2)f ‖2
t

= ‖4(t)f ‖2
t + 2m2‖4 1

2 (t)f ‖2
t + (1+m4)‖f ‖2

t .

Note that the second term on the right-hand side makes sense sincef ∈ D(4(t)) ⊂
D(4 1

2 (t)).
Now, sinceHt (�) andHt ′(�) are setwise equivalent,{fn}, f ∈ Ht ′(�). Let t ′ ∈ [0, T ],

we show thatf ∈ D(K(t ′)) by showing that{fn} is Cauchy with respect to the graph norm
‖ · ‖G(K(t ′)). Note,(fn − fm) ∈ C∞(�) ⊂ D(K(t ′)) ⊂ D(K 1

2 (t ′)), and consider

‖(fn − fm)‖2
G(K(t ′)) = ‖4(t ′), (fn − fm)‖2

t ′ + 2m2‖4 1
2 (t ′)(fn − fm)‖2

t ′

+(1+m4)‖(fn − fm)‖2
t ′ .

From (3.12) and (3.13) we have

‖(fn − fm)‖2
t ′ 6 MT ‖(fn − fm)‖2

t (A2)

and

‖4 1
2 (t ′)(fn − fm)‖2

t ′ 6 M̃4 1
2
‖4 1

2 (t)(fn − fm)‖2
t (A3)

and from (3.14)

‖4(t ′)(fn − fm)‖2
t ′ 6 M4(t ′, t)‖4(t)(fn − fm)‖2

t

+M4 1
2
(t ′, t)‖4 1

2 (t)(fn − fm)‖2
t . (A4)

Since{fn} is Cauchy with respect to‖ ·‖G(K(t)), the right-hand sides of (A2)–(A4) approach
zero asn, m→∞. Thus,

lim
n,m→∞‖fn − fm‖G(K(t ′)) = 0
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and sinceK(t ′) is closed, limn→∞ fn → f ∈ D(K(t ′)) which shows thatD(K(t)) ⊂
D(K(t ′)). However, sincet and t ′ are arbitrary it follows thatD(K(t)) = D(K(t ′)) ≡
D(4) independent oft . �

Proposition. If a family of metrics{γ (t)}t∈[0,T ] satisfies the metric conditions (3.12), and
(3.13) then the domainD(K

1
2 (t)) ≡ D(4 1

2 ) is independent oft .

Proof. This proof is very similar to that of proposition 5. Lett ∈ [0, T ], f ∈ D(K 1
2 (t)),

and{fn} be a Cauchy sequence such that

lim
n→∞‖fn − f ‖

2

G(K
1
2 (t))
= 0

where

‖f ‖2

G(K
1
2 (t))
= ‖f ‖2

t + ‖(4(t)+m2)
1
2f ‖2

t

= ‖4 1
2 (t)f ‖2

t + (1+m2)‖f ‖2
t

= ‖f ‖2

G(4 1
2 (t))
+m2‖f ‖2

t . (A5)

It follows from (A5) thatD(K
1
2 (t)) = D(4 1

2 (t)). Now, we know that{fn}, f ∈ Ht ′(�). It
remains to show thatf ∈ D(K 1

2 (t ′)) for any t ′ ∈ [0, T ]. Consider,

‖(fn − fm)‖2

G(K
1
2 (t ′))
= ‖4 1

2 (t ′)(fn − fm)‖2
t ′ + (1+m2)‖(fn − fm)‖2

t ′ .

From, (A2), (A3) and (A5) we have

lim
n,m→∞‖(fn − fm)‖

2

G(K
1
2 (t ′))
= 0

which shows that{fn} is Cauchy with respect to‖ · ‖
G(K

1
2 (t ′))

, and sinceK
1
2 (t ′) is closed,

limn→∞ fn → f ∈ D(K 1
2 (t ′)) which shows thatD(K

1
2 (t)) ⊂ D(K 1

2 (t ′)). However, since
t and t ′ are arbitrary it follows thatD(K

1
2 (t)) = D(K 1

2 (t ′)) ≡ D(4 1
2 ) is independent oft .

�
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