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Abstract. A classical theory is developed for the time evolution and scattering of minimally
coupled massive scalar fields on closed spacetimes that evolve from initial to final static states.
The time evolution is obtained by reformulating the field equation as an abstract Cauchy problem
on a Hilbert space. Semigroup theory is used to prove the existence of a two-parameter family
of evolution operators, and the field solution is obtained as a mapping of Cauchy data. The
scattering theory is also formulated on a Hilbert space, and the wave operators and scattering
operator are constructed from the evolution operators. It is shown that this approach most readily
applies to spacetimes that undergo contraction.

1. Introduction

The propagation of scalar fields on curved spacetimes is of interest both at a classical level,
and as a foundation from which to build a semiclassical quantum theory in which the field
itself is quantized in the presence of a classical ‘background’ metric [1-3]. A well known
approach to the classical problem, which reduces to the analysis of hyperbolic equations on
Lorenztian manifolds, is due to Leray [4, 5]. In this paper, we study an alternative functional
analytical approach which entails the use of semigroup theory. Apparently, relatively little
work has been done applying this theory on curved spacetimes as compared to its numerous
applications on Minkowski spacetime [6,7]. For ultrastatic metrics, the application of
functional analytical methods for scalar and vector field equations is well known [8,9]. A
key objective of this study is the determination of metric criteria that enable the use of
these methods for time-dependent metrics. Specifically, we consider the time development
and scattering of minimally coupled massive scalar fields on closed spacetimes that evolve
from initial to final static states. The field equation is reformulated as an abstract Cauchy
problem on a Hilbert space, and once in this form conditions are imposed on the metric
that enable the use of semigroup theory. We prove the existence of a two-parameter family
of evolution operators, and obtain the field solution as a mapping of Cauchy data. For the
scattering theory, we construct the wave operators, and then the scattering operator, all of
which are represented in terms of the evolution operators. We show that this approach most
readily applies to closed spacetimes that undergo ‘contraction’ from initial to final static
states. Lastly, we discuss the application of this theory to field quantization.

2. Preliminary concepts

Let (M, g) be a globally hyperbolic oriented time-oriented smooth Lorentzian manifold
consisting a four-dimensional manifoldd and a smooth metricg with signature
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(=1,1,1, 1) which is of the form

Guv(t, x) = (‘01 y(t?x)). (2.1)

Thus, M =~ R x Q and there is a global time coordinate, and a family of Cauchy
surfaces(2, v (¢, x)) which we restrict to be compact and without boundary. The function
y(,x) € C®[R x Q) is a smooth Riemannian metric an for eachr € R. We further
assume thay (¢, x) has the following time development,

yr(x) (T <1
y(t,x) =4 y(t, x) O<t<T) (2.2)
Yo(x) (r <0).

Thus, (M, g) represents a closed universe that evolves from an initial static(S2ate(x)),

to a final static statg<2, yr(x)). From this point on, ther dependence of (¢, x) is
suppressed when appropriate, and the standard convention is adopted in which Greek
subscripts apply toM, g) taking values from 0 to 4, and Latin subscripts applyso y (7))

and range from 1 to 3.

Since the two manifoldg§. M, g) and (€2, y(¢)) have different dimensions and their
metrics have different signatures care is needed when discussing operations that are common
to both. To avoid confusion, different notation is used to distinguish these operations. Let
d* be the exterior derivative 06M, g), and lets* be the codifferentials* = % d*x, where
x is the star operator that sengsforms to ¢ — p)-forms and satisfiegx)? = (—1)7+1.

The D’Alembertian is given byl = —(8%d* + d*s%).

The exterior derivative orfQ2, y (¢)), denotedd, is independent of the metric and is
therefore common to all Cauchy surfaces. However, the codifferedtinl= (—1)7 %, d *;
depends on the star operater which, in turn, depends on the metric and is therefore
indexed byt (x> = 1). The Laplace-Beltrami operatax(s) = § (t)d + d §(¢) is also
indexed. A detailed description of these operators can be found in [10, 11].

Let H,(£2) denote the Hilbert space of complex-valued functionsothat are square
integrable with respect to the measwe(¢) induced byy(¢). Thus,H,(2) is endowed

1

with a norm|| - ||; = (-, -)2, defined by the inner product

() = / 7 oy (Odxt A dx? A di.
Q

We take the operator closuresdfé(z) andA(r) = §(¢r) d + d 8(¢) defined onC*(2) and
have these as unbounded Hilbert space operators. The Laplace—Beltrami operator has the
following representation in local coordinates,

BOS = s (y’f(r),/y(r)aj f) (2.3)

where f € C*(Q) and () f = 0. It is well known thatA(z) extends to a positive
self-adjoint operator oft{,(2), and that this space decomposes as follows [12, 13]:

H,(2) = Ran(A(z)) @ Ker(A(?)). (2.4)

The subspace Kéf (7)) consists of harmonic functions which are constants for compact
manifolds such as$<, y (¢)).
We introduce another operatay' (r) = 9, A(¢) on smooth functions,
-1

A1) =9, (mai (VU Oy (@)0; f)) . (2.5)
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SinceC*® () ¢ D(A™*(t)) (adjoint) is dense i, (2), A'(¢) is closable, and we use the
same notation to denote its closure.

Finally, note that the spacd$t,(2)}:cj0,r] are setwise equivalent. To see this, choose
t,t' € [0,T] and let u, (¢), u,(t') denote the measures induced byr) and y(t'),
respectively. Consider

/|f|2\/mdxlAdx2/\dx3=/ Vik ”/(t),/y(ﬂ)dxlmzxzAarx3

Q Q vy ()

where /y (¢)/+/v ("), which is smooth, bounded, and strictly positive, is the Radon—
Nikodym derivative ofu, () with respect tow, (). Thus the measuref, (t)}:ep,1]

are mutually absolutely continuous, and singe (t)/+/y () is bounded,f € H,;(Q) &

f € Hy(R2). Having established these preliminary results we turn to the field problem.

3. The Cauchy problem

In this section, we obtain an abstract solution to the minimally coupled Klein—Gordon
equation

O¢p +m?p =0 (3.1)
wherem € (0, co). For a metric of the form (2.1), this equation reduces to

32p+K()p=0 (3.2)
where

K (1) = A(r) + m?. (3.3)

Note thatk (¢) is strictly positive, self-adjoint and injective G, with D(K (t)) = D(A(?)).
Therefore,K ~1(¢) is positive, self-adjoint and bounded, akd™/"(¢) are positive and self-
adjoint forn = 2,4, .. ..

The second-order equation (3.2) can be written as a first-order system,

I (dp()) _ . 0
ar(n(t))‘ 'H(’)<n(t>> (34)

wheren () = 9;,¢(t), and

. 0 I
H(t):l(_K(t) 0). (3.5

It is well known thatH () with D(H(t)) = D(K(t)) & D(K%(t)) is self-adjoint on the
Hilbert space

Hiwy(Q) = DK (1)) & H, () (3.6)
with inner product
(F, Gk = (K2 (t) fr, K2 (1) g1)e + (f2. g2)¢ 3.7)

f2

group of unitary operator®,(s) = exp(—iH (¢t)s) on Hk). These operators can also be
viewed as a contraction semigroup with generatdf (t) for s > 0. Therefore, from the
Hille—Yosida theorem we have

where F = (fl) .G = <§1> € H [14,15], SinceH () is self-adjoint it gives rise to a
2

. 1
IRG: —IHO) Flikey < S I1F ke (3.8)
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where R(A : —iH(t)) = [A — (—iH(t))]™! (resolvent) andh € (0,00) C p(—iH(1))
(resolvent set) [6].

It is important to note that the above results apply /@) on Hg ) for eachr € [0, T].
However, the goal is to reformulate (3.4) as a ‘time-dependent’ operator equation on a single
Hilbert space (independent of, thereby transforming the classical dynamics to an abstract
Cauchy problem. Once in this form, we apply semigroup theory and construct a two-
parameter family of evolution operators. Before we proceed, a brief review of some key
results is in order [6, 7].

Definition 1. Let X be a Banach space. A family(z) of linear operators fronk to X
is called aCy semigroup if for eachr € X,

UMD F|x < o0
Ut+s)F=U@®Us)F UOF =F
t — U(t)F is continuous for > 0.

Definition 2. Let X be a Banach space. A family(¢)};p,r; Of infinitesimal generators
of Co semigroups onX is called stable if there are constamks > 1 and g (stability
constants) such that

(B, 00) C p(A()) (3.9
forr € [0, T] and

k
B
RL:AG®))| < —F— 3.10
,E Tl T - (.10
for A > g and for every finite sequenceQH <, ..., 4 < T,k=1,2,....1n (3.10) the

product of resolvent operators is ‘time-ordered’ with the factors that contain lgrgethe
left of ones with smaller [7].

The following theorem establishes the criteria that are sufficient for the existence of an
abstract solution to evolution equations of the form

8 F @) =A@ F (). (3.11)
Theorem 1. Let {A(#)}e0,r; be a stable family of infinitesimal generators 6%
semigroups on a Banach spakewith stability constant$8 and B. If D(A(¢)) = D(A) is
independent of and, for eachF € D(A), A(¢)F is continuously differentiable irX then

there exists a unique two-parameter family of evolution operdtrss), 0 < s <t < T,
satisfying

U@, $)llx < Bexp(p(t —s))
for0O<s <t <T,and

U(t,s)D(A) C D(A) o F(t) = A@)F(1)
where F (1) = U(z, s)F(s), and F(s) is the Cauchy data at= s [7].

We return now to the first-order equation (3.4). To apply theorem 1 we first identify
the operatoriH (r) with A(r) and the ‘out’ Hilbert spacéik ) with X. The next step is
to establish conditions on the metris()},c0,7] that satisfy the criteria of theorem 1.
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Metric conditions. Let f € H,(2) andg € C*°(2). We assume that the family of metrics
{y (") }:ier0,7) Satisfies the following conditions:

LA < IFIE < IFIF < MrllfII7 (3.12)
1 i, 1 ~ 1
1A2(T)glF < 1a2(gll7 < IAz(ngl? < M, 3 I1A2 (gl (3.13)
for 0 <t < ¢ < T, with constants\/, A?A% > 1, and
/ 1 /
IAMNF < Malt, HIAEEIE + M, 3 (. ) A ()87 (3.14)
/7 / 1
18" 0glF < MAIA@EIZ + M. 41162 ()82 (3.15)

Vt,t" € [0, T] and somer € [0, T], where Ma(z,t"), M), > O, andMA%(t, th,M , >0.
A2

Remark 1. The metric conditions are related to the criteria of theorem 1 as follows.
Conditions (3.12)—(3.14) imply that the family of operat¢rd H (¢)},c[0, 1] is stable, and the
domainD(—iH (¢)) is independent of. Condition (3.15) implies thal (¢) F is continuously
differentiable Orﬂ'f[((T).

Remark 2. The first condition (3.12) implies that the ‘volum¥(¢) = ||1||? of the Cauchy
surface($2, y (¢)) is either constant, or contracts as a function of time.

Conditions (3.12)—(3.14) imply that the domaibg K (¢)) and D(K%(t)) are independent
of time, i.e. D(K (1)) = D(A(t)) = D(A) and D(K2(t)) = D(A%(t)) = D(A?) (see the
appendix). This, in turn, implies that the spadet ) }.c0,7] are setwise equivalent, and:

Proposition 1. The domainD(H (1)) = D(H) = D(A) & D(A?) is independent of.

Proof. Recall thatD(H (t)) = D(K (1)) ® D(K%(t)) and apply propositions 5 and 6 of
the appendix. O

Another consequence of the metric conditions is:

Proposition 2.  Let F € Hgry, if a family of metrics{y (t)};cp0, Satisfies the metric
conditions (3.12) and (3.13) then

IF 1, < IF IR, < IF I3, < MIFIZ,, (3.16)
for0<r <t <T,whereM > 1.
Proof.  First, note that (3.13) holds for ajf € D(A%(t)) = D(A%) independent of. Let

F [?} € Hxay = D(K (1)) ® H,, and consider
2

1
IFIZ,, = 1K) fil2 + 11 202

= 1A2@) A7 +m Al + 1L £ (3.17)
Equation (3.16) follows immediately from (3.12), (3.13), and (3.17) with =
max{MT,MA%}. [l

Note that (3.16) implies that
1 ~
= 1Ny, < WFIF, < MIFIF,, (3.18)

vt,t' € [0, T], and therefore the spac¢® k) }:c0,r] have equivalent norms.
The following propositions are needed for the application of theorem 1.



6070 E P Furlani

Proposition 3. The operatord—iH (t)};¢0,7] represent a stable family of infinitesimal
generators o’y semigroups otk r).

Proof. We verify the criteria of definition 2. First, recall thati H(¢) is the infinitesimal
generator of aCo contraction semigrouW,(s) = exp(—iH(t)s) on Hgq. This and
(3.16) imply thatW, (s) is a Co semigroup or{g ). Hence{—iH (¢)};¢po,r] is a family of
infinitesimal generators ofg semigroups otk ). It remains to show that this family is
stable.

Let p,(—iH(t)) and pr(—iH (t)) denote the resolvent sets efiH (r) as an operator
on Hg( and Hgr), respectively. From the Hille-Yosida theorem we ha@eoo) C
pi(—1H 1))Vt € [0, T]. This implies that L—(—iH (¢))] is bijective onHg, for & € (0, 00).
SinceHk ) andHgry are setwise equivalent we have{ (—iH(t))] bijective onHg )
for A € (0, o0) and thus

(0,00) C pr(—iH(1)) (3.19)
vt € [0, T]. Also, from (3.8) and (3.12) it follows that
IR —IH@)Fllkry < IR —1H®)Fllkq
< TIF Ik (320
Vi €[0,T]. Let0O< 1 <1t ...,5 < T be atime ordered partition of [a']. From (3.20)
and repeated application of (3.8) and (3.12) we have

k
HR(A  —iH()F

j=1

<

k
HR()\ L —iH () F
j=1

K(T) K (1)

1 k—1

< l_[R(A:—iH(tj))F
A j=1 K (1)
1 k-1

< [[RO:—iH@)F

j=1 K (t-1)

1 k=2

<SI[]RO-: —iH@G)F
o K(t_1)
1

< 3 | F [l k11

M
< THFHK(T)'
Thus {—iH(t)};e[0,71 IS @ stable family of operators with stability constagts= 0 and
B=+vVM. O

Proposition 4. For eachF € D(H(t)) = D(H), —iH(¢) F is continuously differentiable.

Proof. LetF = (?) € D(H) = D(A) & D(A%). We want to show that there is a
J2

vector F'(t) € Hkr that is continuous with respect tp and satisfies
—iH{+hF — (—-iH@)F)
h

lim =0.

— F'(¢
h—0 ()

Hk )
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Since,
—iH(t +h)F — (—iH@®)F) = —i (A(t +h) fcl) - A(t)fl)

the proof reduces to showing that(r) f is continuously differentiable. Lef € D(A(¢))
and let{ f,} be a Cauchy sequence of smooth functions such that

n"_[noo I fo — f”zG(A([)) =0. (3-21)
Consider the sequend@’(¢) f,,}. From (3.12) and (3.15) we have

IA' (o — F)llF < NA O f — f)I?
<MUA@ S — Fl? + M, 182 (@) (o — fu)l?

SHA@ S = I IEMG + M 41— fi) 1D (3.22)

However, (3.21), which is true fot € [0, T], implies that the right hand side of (3.22)
tends to zero (proposition 5). Therefore, given any 0, there existsV(¢) independent of
t such that

1A' @) (fo — f)llT <€

as long as:, m > N(¢), which shows thafA’(z) f,,} is uniformly convergent with respect

to || - |7 for ¢t € [0, T]. Now, since{f,(t)} = {A'(t) f,} is uniformly convergent on [Or],

and {f,(®)} = {A@®)f,} converges tof (t) = A(¢) f, for eacht € [0, T], it follows that

f (@) is differentiable withf, () — f’(¢) [16,17]. Moreover, since each element{gf ()}

is continuous,f’(¢) is also continuous, and thereforg(?) f is continuously differentiable.
U

We are finally ready to prove the existence of the evolution operators.
Theorem 2. Let{y(t)}:p0 1) be a family of metrics satisfying the metric conditions (3.12)—

(3.15) then there exists a unique two-parameter family of evolution operdiors), 0 <
s <t < T, satisfying

WUC e, <YM for  0<s<t<T (3.23)
U(t, s)D(H) C D(H) (3.24)
QF(t) = —iHO)F () (3.25)

where

0 I
Hm:'(—K(r) 0)

with D(H (t)) = D(H) independent of time, andl(r) = U(z, s) F(s) , whereF(s) is the
Cauchy data at = s.

Proof. We verify that the criteria of theorem 1 are satisfied, i.e. {hatt (t)},cpo, 77 IS a
stable family of infinitesimal generators 6% semigroups ot ), D(—iH (1)) = D(H)
independent of, and for each¥ € D(H), —iH (¢) F is continuously differentiable itk 7).
These were proven in propositions 1, 3 and 4, respectively. O



6072 E P Furlani
Theorem 2 gives the evolution operator for the period 0 < ¢+ < T. The evolution
operators for < s <0 andT < s <t are the ‘free’ operators
Up(t, s) = exp(—i H(O)(t — s)) (3.26)
and
Ur(t,s) = exp(—iH(T)( — s)) (3.27)

respectively. Thus, there are three distinct evolution operators corresponding to three
different epochs, i.e.,

Ur(t,s) (T <s<t)
U(t,s) =13 U, s) O0<s<t<D) (3.28)
Uo(t, s) (t <s<0.

To obtain the time evolution between arbitrary Cauchy surfaces, one needs to take the
appropriate combinations of these operators.

Finally, for the scattering problem we need the inversé/pf:, s) andi/(¢, s). Since
H(T) is self-adjoint onHg 1), Ur(t, s) is unitary with inverse‘uT‘l(t, s) = Ur(s,t). The
operatorl{(t, s) also has an inverse. To see this, it suffices to show that

U, s)F(s) = U(t, s)F?(s) = FY(s) = F?(s) (3.29)
for real-valuedF1(s) and F?(s). To this end, consider the symplectic form
A(F,G) = (Ev g2) — (E, g1):- (3-30)

It is well known that real-valued solutions of hyperbolic equations on globally hyperbolic
manifolds preserve this form, i.e;(F (), G(t)) = A,(F(s), G(s)) where F(t) =

U, s)F(s), G@) = U, s)G(s), and F(s), G(s) are real-valued [4,5,18,19]. To prove
(3.29), letF (s) = F(s) — F?(s), F(t) = U(t, s)F(s), andG(s) be any smooth real-valued
vector. AssumeF(¢) = 0, and consider

A(F(1), G@) = 0= A (F(s), G(s)) =0.

SinceG (s) is arbitrary we haveF (s) = 0. Thus,U(z, s) is injective with inversé/=1(t, s).
Having obtained the classical dynamics, we proceed to the scattering theory.

4. Scattering theory

The goal of scattering theory is to compare the asymptotic behaviour of a field solution
ast — —oo to its asymptotic behaviour as— +o0, that is, to construct the scattering
operator. Note that this scattering problem is different from what one usually encounters
in two respects. First, a typical scattering problem entails an asymptotic comparison of a
free and interacting dynamics which are described by evolution operator&p&a) and

U(t, 0), respectively. However, in our case the ‘interacting’ evolution oper@iors0) is
asymptotically compared to two ‘different’ free evolution operatasg&, 0) andify (¢, 0) as

t — —oo andr — oo, respectively. Second, the ‘generator’ of the ‘free’ dynamics usually
has a continuous spectrum which reflects the fact there are no bound states. However, in
our case the generators of the ‘free’ dynamics have discrete spectra (the Laplace—Beltrami
operator has a discrete spectrum on compact manifolds). Nevertheless, scattering occurs in
the sense that the time evolution of the metric perturbs the time development of the field.
Also, note that this problem is formally similar to an external field problem in which the
field is ‘turned on’ for a finite period of time [20].
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To develop the scattering theory, we show that for any choice of dataH gy for
the interacting dynamic® (1) = U (¢, 0)® there are unique ‘free’ field®i,(z), and Oqy(t)
that describe the asymptotic behaviourdft) in the distant past and future, respectively,
ie.

t_'jrﬁoo [ @in(1) = D ()34, =0 (4.1)
and

t“j;lo [ @out(t) — P (@) I35, = 0. (4.2)
where

®@in (1) = Uo(t, 0)Pin (4.3)
and

Dout(r) = Ur (t, 0)Pout. (4.4)

With this in mind, we define the ‘in’ and ‘out’ spaces

Hin = {® € Hgr) : 3Pin € Hiry With tﬂrpoo Din(t) — ©(r) = 0}
and

Hout = {P € Hi(r)y : IDout € Hiry With IETOO Doui(t) — P (¢) = 0}.

Note that throughout this section we choose the reference data to be at time zero; however,

this is arbitrary and the same analysis applies to reference data on any other Cauchy surface.
The analysis begins with the construction of the wave operatfyand W, that map

the data® of the perturbed solution to the data of the ‘in” and ‘out’ field, respectively,

i.e., & = Win® and &y = Woued. We treat (4.1) first. This case is trivial because

U(t, 0) = Uy(t, 0) for + < 0. Thus,®j, = ® and

Win = 1. (4.5)

Note, Hin = Ran Wi, ") = D(Win) = Hk r).
Next, we treat (4.2). This case is also easy sii¢e s) = Ur(t,s) for T < s <t. One
can readily verify that

Wout = Uy (T, O)U(T, 0). (4.6)

Since u;l(T, 0) is bounded, Wy,: makes sense. It is easy to check thﬁgu% =
UNT,0) Uy (T, 0) is also bounded. AlsaHoy = RanWyit) = D(Wouw) = Hi(r), and
therefore

Hin = Hout = Hi (1)
Finally, we define the classical scattering operdigr= WouW;,
Sa = Uy X(T, OU(T, 0). 4.7)
Note that,
Sc1®in = Pout (4.8)

and thereforeS, correlates the data for the past and future asymptotics of the perturbed
dynamics. The construction of this operator completes the scattering theory.
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5. Examples

To apply the theory developed above, one needs to determine whether a given metric satisfies
conditions (3.12)—(3.15). We give two examples of metrics that satisfy these conditions.

For the first example, we assume that the family of metrics is of the form
{y(t, 0o = {2y (x)}heo,r- Thus the line element for this spacetime is of the
form

ds = —dt* + a(t) yij(x) dx'dx’. (5.1)

Robertson—-Walker spacetimes (e.g. de Sitter space) have this form of conformally static
metric; however, for those metries(t) is not subject to the constraints imposed here [21].
Specifically, we assume thair) > 0 is a smooth function with

a(t,x) = r<0
o(T) t>T.
The metric conditions (3.12)—(3.15) reduce to the following constraints (o)
of (T) <ai(t) <ai() < Myad(T) (5.2)
a3 (T) <af(t) Sai(n) < M,3ai(T) (5.3)
for0<r<t <T,and
at(t) < Ma(t, t)at(t') + M, a3 (t) (5.4)
@ ()% (1) < Mua?(t) + M yai (D) (5.5)

Vt,t' € [0, T] and somer € [0, T]. Note that the volume of the Cauchy surface is either
constant or decreases with time, ile¢’) < V(@) for0<r <¢' < T.

For the second example, we assume that the family of metrics is of the form
{y (@, )} repo,r) = {a(t, x)y (0, x)}ieo,r] Wherea(z, x) > 0 is a smooth function with

1 +<0
a(t,x) =
o (T, x) t>T.

We further assume that there is a finite atlas of chiig xi}ierr,n covering2 such that
the metrics{y (¢, x)}:cj0,r) have a diagonal form in each chart, i.e.

yll(t, X) 0 0
y(t,x) = < 0 y2(t, x) 0 ) (5.6)
0 0 3, x)

for ¢ € [0, T] where
v, %) = a(t, x)y" (0, x). 5.7)

Examples of manifolds with this property include the sphere and torus. We show that
the metrics{y (¢, x)}:c[0,7] Satisfy conditions (3.12)—(3.15) if(z, x) satisfies the following
conditions. First, we assume that there exists 0 such that

a(t’, x)

5.8
= a(t, x) = (5-8)
Vx € Q, with 0 <t < ¢' < T. This condition implies that
t 1
a,x) 1 (5.9)

a(t’, x) €
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and
v x) = (a(t, x) )2 <eb (5.10)
Jy (', x) a(t’, x)
Vx € Q,t,t' €0, T]. We further assume that, for each ché®gt,, x;),
max sup | o; (a(tx)> <Q (5.11)
i xeoy a(t’, x)
sup|o; In(a(z, x))| < P (5.12)
)CE("‘)k
and
max sup[9; (3, In(x(z, x)))| < P’ (5.13)

t XE@k
vt,t' € [0, T], whereQ, P, P’ > 0.
Given the constraints above, it is easy to show that the metric condition (3.12) is satisfied
with My = e3. To verify the remaining conditions we make use of the relation

1AZ(0)gl? = (g, A)g)
= (dg,d g):

N
= ank Zy”wa gl>Vy (d% (5.14)

Xk (®Or) =

where {ni}r=[1,57 IS @ partition of unity subordinate to the atle®;, xi}repr,ny. TO verify
condition (3.13) we erte||A2(t)g||t2In terms of (5.14), apply (5.9) and (5.10) and obtain
MA% = E_g.

The remaining conditions require some analysis. For condition (3.14) choose any chart
(®, xx) and consider the following representation/oft) f, in local coordinates,

AW f = Z = G OVy 8 f)

-1 ii
ZVV(I 3 <V Oy (@) ”(I)\/)/Taf>

@ o vy @)
5 (alt, x) \? O (a(z,x))m a(t x)
I a- "), A 5.15
(Ot(t’,x)) 12:; a(t’, x) W (" f—l— @ f. ( )

By applying (5.9)-(5.11) to (5.15), and then summing the contributions from all the charts
we obtain

IA@FIZ < MAlAG)YFIZ+ M 3185 f12 (5.16)

where

and
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where

Ymax = mia)(SUp)/“ (t, x)). (5.17)
xeQ
We apply a similar analysis for condition (3.15). Choose any alt&t x;) and consider
the following representation of’(¢) f, in local coordinates:

AN f = Za, ( - & OVy 0 f))

5 ,
= 0:(In@(t, 0NADf = Z a0 (In(@(, »H)]y" ()3 f.  (5.18)

By applying (5.12) and (5.13) to (5.18), integrating over all charts, and then substituting
the results into (5.16) with’ = 0 we obtain

1

I8 @F17 < MAIAO Fllg+ M 41420 115
where

M) = P*M,
and

2 2 25

MA =P M 3 +(P) —ymax

Thus, the metric conditions are satisfied. Finally, note that the constraint (5.8) implies that

the volume of the Cauchy surfaces decreases monotonically with timé/ 6. < V()
forO<t <t <T.

6. Discussion

Having solved the classical problem, we give a brief description of a method that could
presumably be used for field quantization. This method has been developed by numerous
authors, including, for example, Dimock and Isham [19, 22].

The goal of the quantum problem is to construct a field operator that satisfies the field
equation in a distributional sense, and satisfies the canonical commutation relations (CCRS).
The first step is the construction of operator-valued ‘data’ on an arbitrary Cauchy surface.
This Cauchy data provides a representation of the CCRs on the Fock space over the square-
integrable functions on this surface. The time development mimics the classical problem
with the classical evolution operator transferred to the test functions inside the arguments
of the field operators. Thus, the interacting field solves an operator-valued Cauchy problem
in addition to the other quantum requirements.

The quantum scattering theory also mimics the classical theory. Given the Cauchy data
for the interacting field one defines ‘data’ for the ‘in’ and ‘out’ fields by transferring the
respective classical wave operators from the interacting ‘data’ to their test functions. The
time development of the ‘in’ and ‘out’ data is realized in a distributional sense using the
respective ‘free’ evolution operators. Thus, representations of the ‘in’, ‘out’, and interacting
fields are obtained, all on the same Fock space. To describe scattering, the ‘out’ field is
represented in terms of the ‘in’ field by transferring the classical scattering operator from
the ‘in’ data to their test functions. To complete the theory one shows that this mapping
between the ‘in’ and ‘out’ data is unitarily implementable. This is equivalent to proving the
existence of the quantum scattering operator. For this final step, we note the work of Wald
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[23] and Fullinget al [24]. Wald has proven the existence of thienatrix on spacetimes that

are flat off of compact sets, and Fullirg al have adapted this work to closed spacetimes
that are initially, and finally static. Since these are the spacetimes considered here, we
are optimistic that this work can be applied to our problem. Finally, although the method
outlined above appears to be viable, numerous technical details remain to be addressed.
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Appendix

This appendix contains two propositions that establish the time invariance of the domain of
the Laplace—Beltrami operator and its square root.

Proposition.  If a family of metrics {y (t)t},c[0,r] satisfies the metric conditions (3.12),
(3.13) and (3.14) then the domain(K (¢)) = D(A(t)) = D(A) is independent of.

Proof. Choose any € [0, T] and f € D(K(t)), and let{f,} be a Cauchy sequence of
smooth functions that converge fin the graph norm@*(2) is a core forK (1)), i.e.

Iim 11fu = g =0 (A1)
where
1A NGk = IFIZ+ 1A@) +m®) fII7
= 1A FIZ +2m2| A2 @) FI2 + L+ mb)] f112
Note that the second term on the right-hand side makes sense girceD(A(t)) C
D(AZ(1)).

Now, sinceH, (2) andH, (2) are setwise equivalentf,}, f € H, (). Lett € [0, T],
we show thatf € D(K (¢')) by showing thaf f,,} is Cauchy with respect to the graph norm
I Iy Note,(f, — f) € C¥(RQ) C D(K(t)) C D(K(t')), and consider
1o = Sl = 18G), (fo = Fudl12 + 2021 A2 (fy — fu 2

+A+mH N = f)lIZ
From (3.12) and (3.13) we have

1Cfa = fad 17 < Mzl (fa = )12 (A2)
and

182 @) fu— fadlZ < M 1A S = fi)lI? (A3)
and from (3.14)
IAE Yo — f)lIZ < MA@ DIA@ (S — fi)I?

M (1 DIDE O = f)lI2 (A4)

Since{ f,} is Cauchy with respect t- ||k ), the right-hand sides of (A2)—-(A4) approach
zero asn, m — oo. Thus,

lim || f, — fullokay =0
n,m—00
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and sinceK (¢') is closed, lim_ f, — f € D(K(")) which shows thatD(K(¢)) C
D(K(t')). However, since and:’ are arbitrary it follows thatD(K (¢)) = D(K(t")) =
D(A) independent of. O

Proposition.  If a family of metrics{y (¢)}:c[0,r] satisfies the metric conditions (3.12), and
(3.13) then the domai® (K 2 (1)) = D(A?) is independent of.

Proof.  This proof is very similar to that of proposition 5. Let [0, T], f € D(K%(t)),
and{f,} be a Cauchy sequence such that
. _ 2 —
Jim |1 £, fIIG(K%m)
where

£ 112 = /12 + [(AG) +mD)2 £

GK3 (1))
1
= A2@) f12 + A+ m?)| f1I?

— 2 2 2
=IFI2 5, +moIfIE (A5)

It follows from (A5) thatD(K%(t)) = D(A%(t)). Now, we know thaf f,}, f € H, (). It
remains to show thaf € D(K%(t/)) for anyt’ € [0, T]. Consider,

1= S 5, = IB2E = SidlE + @ DI = fulF-
From, (A2), (A3) and (A5) we have
. _ 2 —
W[!fﬂoo 1(fn fm)”G(K%(r’)) 0

which shows that f,,} is Cauchy with respect t¢ - || and sinceK%(t/) is closed,

GK2()'
lim, oo fu > f € D(K%(t’)) which shows tharD(K%(t)) C D(K%(t/)). However, since
t andt’ are arbitrary it follows thalD(K%(t)) = D(K%(z/)) = D(A%) is independent of.
U
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